

Current Transducer LT 1005-T/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

1615

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ + 24 V Measuring resistance @		_	$1000 \\ 0 \dots + 2000 \\ \mathbf{T}_{\mathrm{A}} = 70^{\circ}\mathrm{C} \bigg \mathbf{T}_{\mathrm{A}} = 85^{\circ}\mathrm{C} \\ \mathbf{R}_{\mathrm{M min}} \mathbf{R}_{\mathrm{M max}} \bigg \mathbf{R}_{\mathrm{M min}} \mathbf{R}_{\mathrm{M max}}$			
	avec ± 15 V	@ $\pm 1000 A_{max}$	0	24	0	21	Ω
		$@ \pm 1500 A_{max}$	0	7	0	4	Ω
	avec ± 24 V	@ \pm 1000 A _{max}	5	58	10	55	Ω
		@ $\pm 2000 A_{max}$	5	16	10	13	Ω
I _{SN}	Secondary nominal r.m.s. current			25	0		m A
K _N	Conversion ratio			1:	4000		
V _C	Supply voltage (± 5 %)			± 1	15 24	1	V
I _c	Current consumption			30	(@±24	V)+ I s	mΑ
\mathbf{V}_{d}	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 m	nn	12		3	kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{G}}{\boldsymbol{e}_{L}}$	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity		± 0.4 < 0.1		% %
I _о	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 25°C + 85°C - 40°C 25°C	± 0.25	Max ± 0.50 ± 0.70 ± 0.80	m A m A m A
t _, di/dt f	Response time 1) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$	Ambient operating temperature Ambient storage temperature Secondary coil resistance @	$T_A = 70$ °C $T_A = 85$ °C	- 40 + 85 - 40 + 95 26 29	Ω Ω Ω
m	Mass Standards	A SS S	1.2 EN 50155	kg

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_{c} = \pm 15 ... 24 (\pm 5 \%) V$
- $\mathbf{K}_{N} = 1:4000$
- $V_d^{n} = 12 \text{ kV}$
- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Potted
- Connection to secondary circuit on 3 M4 threaded studs.
- · Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

 \underline{Notes} : $^{1)}$ With a di/dt of 100 A/ $\mu s.$

Dimensions LT 1005-T/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Connection of secondary Fastening torque

± 0.5 mm

4 holes Ø 6.5 mm or by the primary bar M4 threaded studs 1.2 Nm or .88 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.